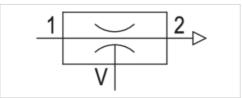


Ejektor, Serie EBS

- Gewindeanschluss
- Pneumatische Ansteuerung, T-Bauform
- mit Schalldämpfer


Ejektor Тур

Ausführung Pneumatische Ansteuerung, T-Bauform

Betriebsdruck min./max. 3 ... 6 bar Umgebungstemperatur min./max. 0 ... 60 °C 0 ... 60 °C Mediumstemperatur min./max. Medium Druckluft

Max. Partikelgröße 5 µm Ölgehalt der Druckluft 0 ... 1 mg/m³

Gewicht Siehe Tabelle unten

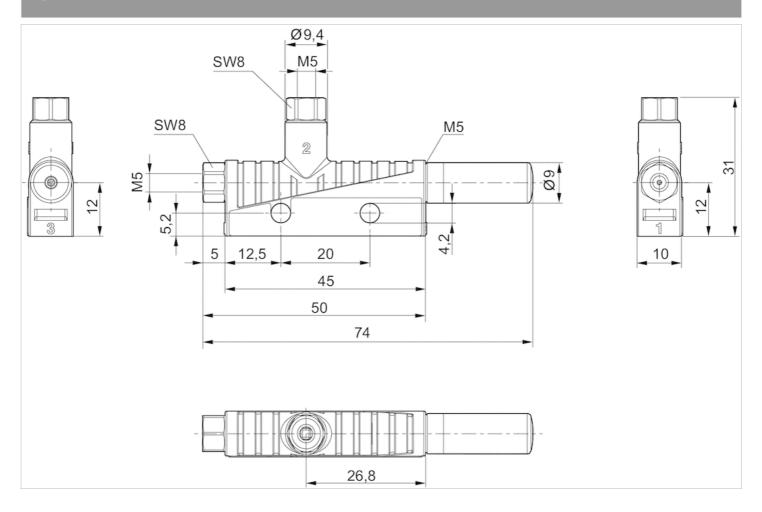
Technische Daten

Materialnummer	Тур	Düsen-Ø	Druckluftanschluss	Vakuumanschluss	Max. Vakuum bei p.opt	Max. Saugvermögen
R412007473	EBS-PT-05-NN	0,5 mm	M5	M5	84 %	7 l/min
R412007474	EBS-PT-07-NN	0,7 mm	M5	M5	85 %	16 l/min
R412007475	EBS-PT-10-NN	1 mm	G 1/8	G 1/8	85 %	38 l/min
R412007476	EBS-PT-15-NN	1,5 mm	G 1/8	G 1/8	85 %	70 l/min
R412007477	EBS-PT-20-NN	2 mm	G 1/4	G 3/8	86 %	123 l/min
R412007478	EBS-PT-25-NN	2,5 mm	G 1/4	G 3/8	82 %	215 l/min

Materialnummer	Luftverbrauch bei p.opt.	Schalldruckpegel angesaugt	Schalldruckpegel ansaugend	Gewicht	Abb.
R412007473	14 l/min	53 dB	58 dB	0,008 kg	Fig. 1
R412007474	25 l/min	59 dB	65 dB	0,008 kg	Fig. 1
R412007475	48 l/min	59 dB	65 dB	0,022 kg	Fig. 2
R412007476	118 l/min	66 dB	72 dB	0,022 kg	Fig. 2
R412007477	208 l/min	68 dB	77 dB	0,048 kg	Fig. 3
R412007478	311 l/min	75 dB	78 dB	0,048 kg	Fig. 3

p.opt. = optimaler Betriebsdruck

Technische Informationen


Hinweis: Alle Angaben beziehen sich auf einen Umgebungsdruck von 1.013 bar und eine Umgebungstemperatur von 20 $^{\circ}$ C . Der Drucktaupunkt muss mindestens 15 $^{\circ}$ C unter der Umgebungs- und Mediumstemperatur liegen und darf max. 3 $^{\circ}$ C betragen.

Technische Informationen

Werkstoff	
Gehäuse	Polyamid, glasfaserverstärkt
Dichtung	Acrylnitril-Butadien-Kautschuk
Düse	Aluminium
Gewindebuchse	Aluminium, eloxiert
Schalldämpfer	Polyethylen

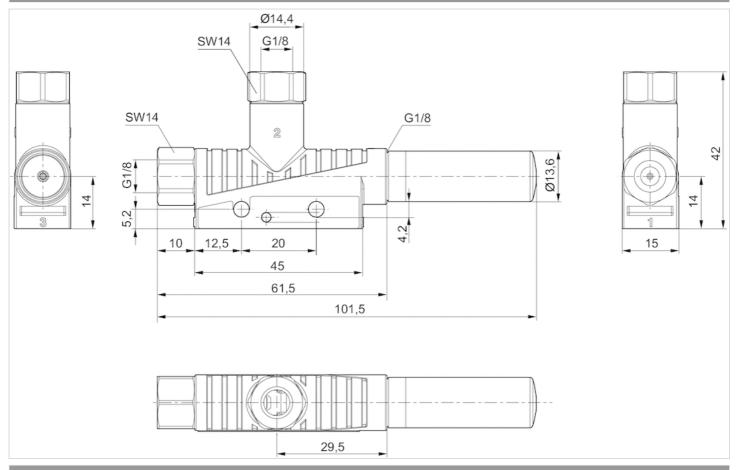

Abmessungen

Fig. 1

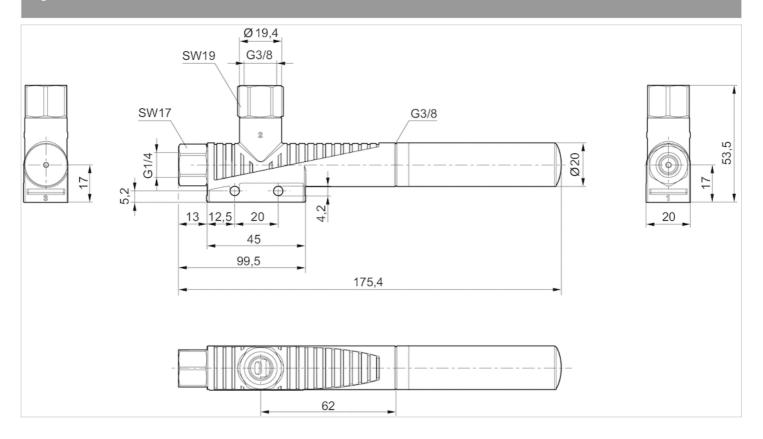
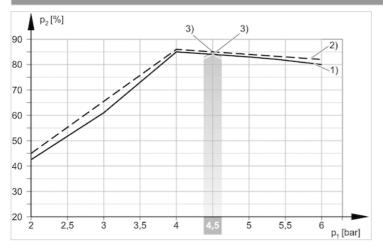
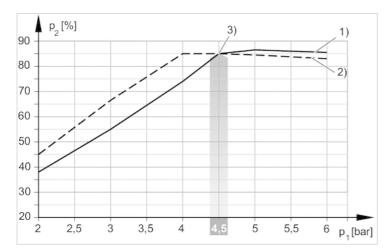
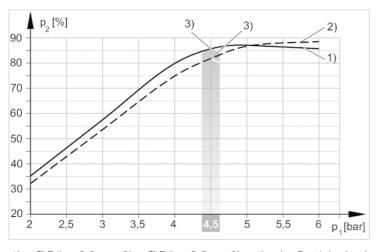


Fig. 2

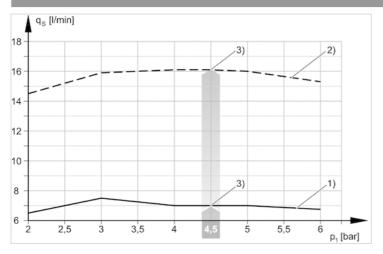

Fig. 3



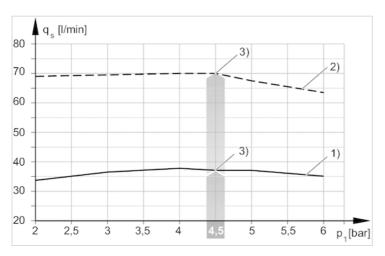
Diagramme


Vakuum p2 in Abhängigkeit vom Betriebsdruck p1

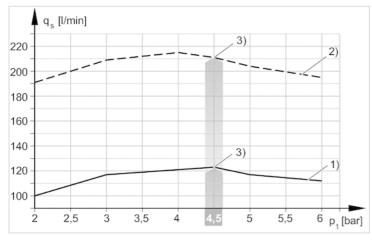
1) = \emptyset Düse 0,5 mm 2) = \emptyset Düse 0,7 mm3) optimaler Betriebsdruck



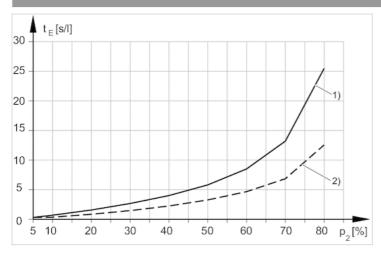
1) = Ø Düse 1,0 mm 2) = Ø Düse 1,5 mm3) optimaler Betriebsdruck

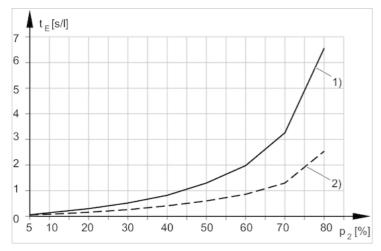


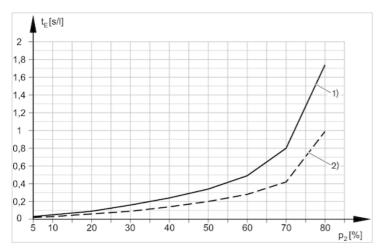
1) = Ø Düse 2,0 mm 2) = Ø Düse 2,5 mm3) optimaler Betriebsdruck


Saugvermögen gs in Abhängigkeit vom Betriebsdruck p1

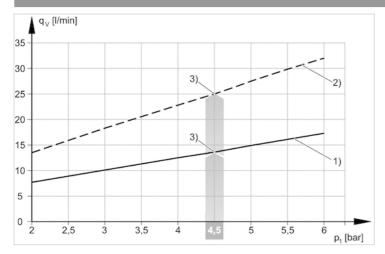
1) = Ø Düse 0,5 mm 2) = Ø Düse 0,7 mm3) optimaler Betriebsdruck

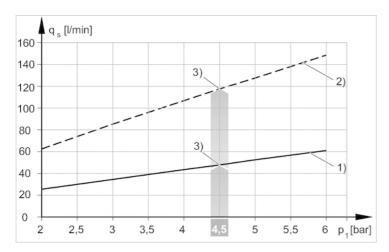

1) = Ø Düse 1,0 mm 2) = Ø Düse 1,5 mm3) optimaler Betriebsdruck

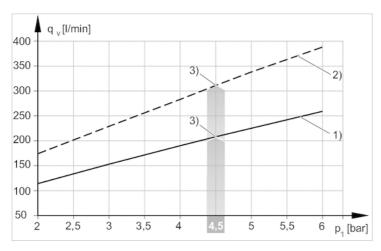

1) = Ø Düse 2,0 mm 2) = Ø Düse 2,5 mm3) optimaler Betriebsdruck


Evakuierungszeit tE in Abhängigkeit vom Vakuum p2 für 1 l Volumen (bei optimalem

1) = Ø Düse 0,5 mm 2) = Ø Düse 0,7 mm


1) = Ø Düse 1,0 mm 2) = Ø Düse 1,5 mm


1) = Ø Düse 2,0 mm 2) = Ø Düse 2,5 mm


Luftverbrauch qv in Abhängigkeit vom Betriebsdruck p

1) = Ø Düse 0,5 mm 2) = Ø Düse 0,7 mm3) optimaler Betriebsdruck

1) = Ø Düse 1,0 mm 2) = Ø Düse 1,5 mm3) optimaler Betriebsdruck

1) = Ø Düse 2,0 mm 2) = Ø Düse 2,5 mm3) optimaler Betriebsdruck